
Chapter 1

WAKES AND IMPEDANCES

1.1 Wake Fields

A positively charged particle at rest has static electric �eld going out radially in all

directions. In motion with velocity v, magnetic �eld is generated. As the particle velocity

approaches c, the velocity of light, the electric and magnetic �elds are pancake-like, the

electric �eld is radial and magnetic �eld azimuthal (the Li�enard-Wiechert �elds) with

an open angle of about 1=
, where 
 =
p
1� v2=c2. It is interesting to point out that

no matter how far away, this pancake is always perpendicular to the path of motion.

In other words, the �elds move with the test particle without any lagging behind as

illustrated in Fig. 1.1. Such a �eld pattern is, of course, the steady-state solution of the

problem.

When placed inside a perfectly conducting beam pipe, the pancake of �elds is

trimmed by the beam pipe. A ring of negative charges will be formed on the walls

of the beam pipe where the electric �eld ends, and these image charges will travel at

the same pace with the particle, creating the so-called image current. If the wall of

the beam pipe is not perfectly conducting or contains discontinuities, the movement of

the image charges will be slowed down, thus leaving electromagnetic �elds behind. For

example, when coming across a cavity, the image current will 
ow into the walls of the

cavity, exciting �elds trapped inside the cavity. These �elds left behind by the particle

are called wake �elds, which are important because they in
uence the motion of the

particles that follow.
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Figure 1.1: Schematic drawing of pan-cake electromagnetic �elds emitted by an

ultra-relativistic particle traveling with velocity v. The pan-cake is always perpen-

dicular to the path of the particle and travels in pace with the particle no matter

how far away the �elds are from the particle. There is no violation of causality be-

cause �elds at points A and B come from the particle at di�erent locations. Fields

from A are from A0 at a time OA0=v ago, while �elds at B from point B0 at a time

OB0=v ago.

In addition to the wake �elds, the electromagnetic �elds seen by the beam particle

consist of also the external �elds from the magnets, rf, etc. The electric �eld ~E and

magnetic 
ux density ~B can be written as

( ~E; ~B) seen by
particles

= ( ~E; ~B) external, from
magnets, rf, etc.

+ ( ~E; ~B) wake
�elds

(1.1)

where

( ~E; ~B) wake
�elds

(
/ beam intensity

� ( ~E; ~B)external :

Note that the last restriction, which is certainly not true in plasma physics, allows

wake �elds to be treated as perturbation. This perturbation, however, will break down

when potential-well distortion is large. In that case, the potential-well distortion has

to be included into the non-perturbative part. What we need to compute are the wake

�elds at a distance z behind the source particle and their e�ects on the test or witness

particles that make up the beam. The computation of the wake �elds is nontrivial. So

approximations are required.
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1.2 Two Appromixations
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Figure 1.2: Schematic drawing of of a witness particle at a distance z behind the

some source particle in a beam. Both particles are traveling along the direction s

with velocity ~v.

At high energies, the particle beam is rigid and the following two approximations

apply:�

(1) The rigid beam approximation, which says that the beam traverses the discon-

tinuity of the vacuum chamber rigidly and the wake �eld perturbation does not a�ect

the motion of the beam during the traversal of the discontinuity. This is a good ap-

proximation even in the presence of synchrotron oscillations, because the longitudinal

distance between two beam particles changes negligibly in a revolution turn relative to

the circumference of the accelerator ring. This implies that the distance z of the test

particle behind some source particle as shown in Fig. 1.2 does not change.

(2) The impulse approximation. Although the test particle carrying a charge q sees

a wake force ~F coming from ( ~E; ~B), what it cares is the impulse

�~p =

Z 1

�1

dt ~F =

Z 1

�1

dt q( ~E + ~v � B) (1.2)

as it completes the traversal through the discontinuity at its �xed velocity ~v. Note

that MKS units have been used in Eq. (1.2) and will be adopted throughout the rest

of the lectures. We will therefore be coming across the electric permitivity of free

space �0 = 107=(4�c2) farads/m and the magnetic permeability of free space �0 =

�This approach to the Panofsky-Wenzel Theorem was presented by A.W. Chao at the OCPA Accel-

erator School, Hsinchu, Taiwan, August 3-12, 1998.



1-4 1. WAKES AND IMPEDANCES

4� � 10�7 henry/m. These two quantities are related to the free-space impedance Z0

and velocity of light c by

Z0 =

r
�0

�0
= 2:99792458� 40� = 376:730313 Ohms ;

c =
1p
�0�0

= 2:99792458� 108 m=s : (1.3)

Both ~E, ~B, and ~F are diÆcult to compute even at high beam energies. However,

the impulse �~p has great simplifying properties through the Panofsky-Wenzel (P-W)

theorem, which forms the basis of wake potentials and impedances.

1.3 Panofsky-Wenzel Theorem

Maxwell equations for a particle in the beam are:8>>>>>>>>>><
>>>>>>>>>>:

~r� ~E =
�

�0
Gauss's law for electric charge;

~r� ~B � 1

c2
@ ~E

@t
= �0�c�ŝ Ampere's law;

~r� ~B = 0 Gauss's law for magnetic charge;

~r� ~E +
@ ~B

@t
= 0 Faraday's & Lenz law:

(1.4)

We have replaced the current density with ~j = �c�ŝ where � is the charge density of

the beam. The beam particle velocity j~vj = �c will be treated as a constant, which is

the result of the rigid-beam approximation, and is certainly true at high energies when

� � 1. Note that we have been denoting the s-axis as the direction of motion of the

beam, while reserving z as the distance the witness particle is ahead the source particle.

For a circular ring, the s-axis constitutes the axis of symmetry of the vacuum chamber.

Together with the transverse coordinates x and y, they form an instantaneous right-

handed Cartesian coordinate system. Thus, the above wake �elds ~E and ~B as well as

wake force ~F are function of x; y; s; t. From the rigid beam approximation, the location

of the test particle, s, is not independent, but is related to t by s = z + �ct, where

z is regarded as time-independent and the location of the source particle is given by

ssource = �ct. Since we are looking at the �eld behind a source, z is negative.
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The Lorentz force on the test particle of charge q is ~F = q( ~E + �cŝ� ~B). Here the

rigid-beam approximation has also been used by requiring that the test particle has the

same velocity as all other beam particles. It follows that

~r� ~F =
q�

�0
2
� q�

c

@Es

@t
; (1.5)

~r� ~F = �q
�
@

@t
+ �c

@

@s

�
~B : (1.6)

We are only interested in the impulse

�~p (x; y; z) =

Z 1

�1

dt ~F (x; y; z+�ct; t) ; (1.7)

i.e., the integration of ~F along a rigid path with z being held �xed. Applying the curl

to both sides,

~r��~p (x; y; z) =

Z 1

�1

dt
h
~r� ~F (x; y; s; t)

i
s=z+�ct

; (1.8)

" "
this ~r refers this ~r refers

to x; y; z to x; y; s

we obtain for the right side,

Right Side = �q
Z 1

�1

dt

��
@

@t
+ �c

@

@s

�
~B(x; y; s; t)

�
s=z+�ct

= �q
Z 1

�1

dt
d ~B

dt
= �q ~B(x; y; z+�ct; t)

���1
t=�1

= 0 : (1.9)

We therefore arrive at relation
~r��~p = 0 ; (1.10)

which is the P-W theorem. It is important to note that so far no boundary conditions

have been imposed. The P-W theorem is valid for any boundaries ! The only needed

inputs are the two approximations: the rigid-bunch approximation and the impulse

approximation. The P-W theorem even does not require � = 1. It just requires � � 1

so that � can remain constant. Thus, the P-W theorem is very general.

The P-W theorem can be decomposed into a component parallel to the ŝ and one

perpendicular to ŝ. The decomposition is obtained by taking dot product and cross

product of ŝ with Eq. (1.10):
~r�(ŝ��~p) = 0 ; (1.11)
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@

@z
�~p? = ~r?�ps : (1.12)

Equation (1.11) says something about the transverse components of �~p, which becomes,

in Cartesian coordinates,
@�px
@y

=
@�py
@x

: (1.13)

On the other hand, Eq. (1.12) relates �~p? and �~pz, that the transverse gradient of

the longitudinal impulse is equal to the longitudinal gradient of the transverse impulse.

Thus, the P-W theorem strongly constraints the components of �~p.

There is an important supplement to the P-W theorem, which states:

� = 1 �! ~r?��~p? = 0 : (1.14)

Proof:

~r��~p =

Z 1

�1

dt
h
~r� ~F (x; y; s; t)

i
s=z+ct

= �q

c

Z 1

�1

dt

�
@Es

@t

�
s=z+ct

= q

Z 1

�1

dt

�
@Es

@s

�
s=z+ct

=
@

@z
�ps ;

where we have used the fact that the longitudinal component of the wake force is in-

dependent of the magnetic 
ux density. For the second last step, use has been made

of
@

@t
Es(s; t) =

d

dt
Es(s; t)� ds

dt

@

@s
Es(s; t) : (1.15)

It is important to note that 4�q�=
2, the space charge term of ~r� ~F in Eq. (1.6) has

been omitted because � = 1.

1.4 Cylindrically Symmetric Chamber

When the beam of cylindrical cross section is inside a cylindrically symmetric vacuum

chamber, naturally cylindrical coordinates will be used. Some di�erential operators in

the cylindrical coordinates are listed in Table 1.16. The P-W theorem, Eq. (1.10), and

the supplemental theorem, Eq. (1.14), become [2]
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Table 1.1: Di�erential operators in the cylindrical coordinates. Here ~A is a vector

and � is a scalar.

~r � ~A =
1

r

@

@r
(rAr) +

1

r

@A�

@�
+
@As

@s
;

~r� ~A = r̂

�
1

r

@A�

@s
� @A�

@s

�
+ �̂

�
@Ar

@s
� @As

@r

�
+ ŝ

�
1

r

@(rA�)

@r
� 1

r

@Ar

@�

�
;

r2� =
1

r

@

@r

�
r
@�

@r

�
+

1

r2
@2�

@�2
+
@2�

@s2
:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

@

@r
(r�p�) =

@

@�
�pr ;

@

@z
�pr =

@

@r
�ps ;

@

@z
�p� =

1

r

@

@�
�ps ;

@

@r
(r�pr) = � @

@�
�p� (� = 1) :

(1.16)

Now, this set equations for �~p becomes surprisingly simple. It does not contain any

source terms and is completely independent of boundaries, which can be conductors,

resistive wall, dielectric, or even plasma. This result solely arises from the Maxwell

equations plus the two approximations.

There is no loss of generality by letting �pz � cosm� with m � 0. Then, we get

�ps = �~ps cosm� �! �pr = �~pr cosm� and �p� = �~p� sinm� ; (1.17)

where �~ps, �~pr, and �~p� are �-independent. The set of equations for �~p becomes8>>>>>>>>>><
>>>>>>>>>>:

@

@r
(r�~p�) = �m�~pr ;

@

@z
�~pr =

@

@r
�~ps ;

@

@z
�~p� = �m

r
�~ps ;

@

@r
(r�~pr) = �m�~p� (� = 1) :

(1.18)
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From the �rst and last equations, we must have, for m = 0,

�~p� = 0 and �~p� = 0 ; (1.19)

otherwise they will be proportional to r�1 which is singular at r = 0. From the same

two equations, we get, for m 6= 0,

@

@r

�
r
@

@r
(r�~pr)

�
= m2�~pr ; (1.20)

and therefore

�pr(r; �; z) � rm�1 cosm� : (1.21)

Now the whole solution can be written as, for all m � 0,8><
>:

v�~p? = �qImWm(z)mrm�1
�
r̂ cosm� � �̂ sinm�

�
;

v�ps = �qImW 0
m(z)r

m cosm� :

(1.22)

In above, Wm(z) is called the transverse wake function of azimuthal m and W 0
m(z)

the longitudinal wake function of azimuthal m. They are related because of the P-W

theorem. The wake functions are functions of one variable z only, and are the only

remaining unknown. They must be solved with boundary conditions. Recall that the

complicated Maxwell-Vlasov equation that involves ~E, ~B, and sources has been reduced

drastically to solving just for Wm.

More comments about Eq. (1.22) are in order. The original solution in the top line

of Eq. (1.22) was for m 6= 0 only. However, we can always de�ne a W0(z) which is

the anti-derivative of W 0
0(z) so that the solution holds for all m. Although W0(z) has

no physical meaning, yet it will be helpful in discussions below. In Eq. (1.22), q is the

charge of the test particle and Im is the electric mth multipole of the source particle. For

a source particle of charge e at an o�set a from the axis of the cylindrical beam pipe,

Im = eam. Thus, W 0
m has the dimension of force per charge square per length(2m�1)

or Volts/Coulomb/m2m, while Wm has the dimension of force per charge square per

length2m or Volts/Coulomb/m2m�1. The negative signs on the right sides arise just from

a convention. For example, we want the longitudinal wake W 0m(z) to be positive when

the impulse acting on the test particle is decelerating.

Recall that we have been looking at the wake force on a particle traveling at s = z+vt

behind a source particle traveling at s = vt. Thus z < 0. When v ! c, causality has to
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be imposed that Wm(z) = 0 when z > 0. For our discussions below, we will continue to

use v instead of c in most places, because we would like to derive stability conditions and

growth rates also for machines that are not ultra-relativistic. However, strict causality

will be imposed as if the velocity is c.

Immediately behind a source particle, the test particle should receive a retarding

force, otherwise a particle will continue to gain energy as it is traveling down the vacuum

chamber in direction violation of the conservation of energy. This implies thatW 0
m(z) > 0

when jzj is small, recalling that theW 0
m(z) is de�ned in Eq. (1.22) with a negative sign on

the right side. This is illustrated in Fig. 1.3. It will be proved later in Chapter 7.5 that

Figure 1.3: The longitudinal wake W 0
m(z) vanishes when z > 0 and is positive

de�nite when jzj is small. The transverse wake Wm(z) starts out from zero and goes

negative as jzj increases.

a particle sees half of its own wake. For the transverse wake Wm(z), it starts out from

zeroy and goes negative as jzj increases, as required by the P-W theorem. Thus, when

the source particle is de
ected, a transverse wake force is created in the direction that it

will de
ect particles immediately following in the same direction of the de
ection of the

source. Again, special attention should be paid to the negative sign on the right side of

the de�nition ofWm(z) in Eq. (1.22). The transverse wake Wm vanishes at z = 0 implies

that a particle will not see its own transverse wake at all. This leads to the important

conclusion that a shorter bunch will be preferred if the transverse wake dominates, and

a longer bunch will be preferred if the longitudinal wake dominates.

When m = 0 or the monopole, we have �p? = 0 while �ps is independent of (r; �)

and depends only on z. Thus, particles in a thin transverse slice of the beam will see

yAlthough it can not be proved that Wm(0) = 0, however, most wakes do have this property.
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Figure 1.4: All particles in a vertical slice of the beam see exactly the same

monopole wake impulse (m = 0) from the source according to the slice position

z behind the source. This longitudinal variation of impulse e�ect on the slices can

lead to longitudinal microwave instability.
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Figure 1.5: Kicks for all the particles in the slice from the dipole wake impulse

also have the same magnitude; however, the longitudinal kicks point to forward or

backward direction depending on whether the particles are above or below the axis

of symmetry.

the same impulse in the s-direction according to the dependence of W 0
0 on z, as shown

in Fig. 1.4. This impulse can lead to self-bunching or microwave instability.

For m = 1, we have from Eq. (1.22) that �p? is independent of (r; �) but depends

on z only. All particles in a vertical slice of the beam su�er exactly the same vertical

kick from the dipole wake impulse (m = 1) which depends only on how far the slice is

behind the dipole source, as is shown in Fig. 1.5. Such an impulse can lead to the tilting

of the tail of the bunch into a banana shape; it can also cause beam breakup. On the

other hand, the dipole longitudinal impulse �ps (m = 1) is proportional to the o�set in

the x-direction.
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For the sake of convenience, many authors do not like to work with a negative z

for the particles that are following. There is another convention that Wm(z) = 0 when

z < 0. This does not change the physics and the direction of the wake forces will not

be changed. Thus, instead of Fig. 1.3, we have Fig. 1.6 instead. A price has to be paid

Figure 1.6: This is a di�erent convention that the wake functions Wm(z) vanish

when z < 0. Since the physics is the same, the wake functions are the same as

in Fig. 1.3 and just the direction of z has been changed. In this convention, the

interpretation W 0
m(z) � �

d

dz
Wm(z) is required.

for this convention. We must interpret the connection between the longitudinal and

transverse wakes as

W 0
m(z) � � d

dz
Wm(z) : (1.23)

This convention will be used for the rest of the lectures.z Fortunately, we will not be

using Eq. (1.23) much below, because most longitudinal instabilities are driven dom-

inantly by the monopole longitudinal wake W 0
0 and most transverse instabilities are

driven dominantly by the dipole transverse wake W1.

zThe readers should be aware of yet another convention in the literature that the wake functions

Wm(z) and W 0
m(z) are de�ned in Eq. (1.22) without the negative signs on the right sides. As a result,

the wake functions will have just the opposite signs of what are depicted in Fig. 1.6.
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1.5 Coupling Impedances

Beam particles form a current, of which the component with frequency !=(2�) isx

I(s; t) = Îe�i!(t�s=v), where Î may be complex. This current component at location

s and time t will be a�ected by the wake of the preceding beam particles that pass the

point s at time t�z=v with the charge element I(s; t�z=v)dz=v. The total accelerating
voltage seen (or energy gained per unit test charge) will be

V (s; t) = �
Z 1

�1

Îe�i![t�(s+z)=v]W 0
0(z)

dz

v
= �I(s; t)

Z 1

�1

ei!z=vW 0
0(z)

dz

v
: (1.24)

Thus, we can identify the longitudinal coupling impedance of the vacuum chamber as

Z
k
0(!) =

Z 1

�1

ei!z=vW 0
0(z)

dz

v
: (1.25)

This de�nition is the same as the ordinary impedance in a circuit. However, we have

here much more than in a circuit because the current distribution can possess higher

multiples.

When the current is displaced transversely by a from the axis of symmetry of the

beam pipe, the de
ecting transverse force acting on a current particle is obtained by

summing the charge element I(s; t�z=v)dz=v passing s at time t�z=v,

hF?
1 (s; t)i = �qa

`

Z 1

�1

Îe�i![t�(s+z)=v]W1(z)
dz

v
= �qa

`
I(s; t)

Z 1

�1

ei!z=vW1(z)
dz

v
;

(1.26)

where hF?
1 (s; t)i is the transverse force averaged over a length ` covering the discontinuity

of the vacuum chamber, and is therefore equal to v�p?=`, with �p? being the transverse

impulse studied in the previous sections. For an accelerator ring or storage ring, this

length is taken to be the ring circumference C. We identify the transverse coupling

impedance of the vacuum chamber as

Z?
1 (!) =

i

�

Z 1

�1

ei!z=vW1(z)
dz

v
: (1.27)

xWe are going to use the physicist convention (except in Chapter 7.5) of denoting the frequency

dependence by e
�i!t, which leads to the results that the capacitive impedance is positive imaginary

while the inductive impedance is negative imaginary. The opposite is true in the engineering convention

of ej!t.
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In both Eqs. (1.24) and (1.26), the lower limits of integration have been extended to

�1, because the wake functions vanish when z < 0. From Eq. (1.26), it is evident that

we can also compute the transverse impedance by integrating the wake force averaged

over one turn according to

Z?
1 (!) = � i

q�I0a

Z C

0

F?
1 (s; t) ds ; (1.28)

where Ia represents the dipole source current. Since Re Z?
1 (!) > 0 implies an energy

loss, the force leads the displacement Ia by �
2
, and hence the factor �i in Eq. (1.28).

The Lorentz factor � = v=c is a convention.

Inversely, the wake functions can be written in terms of the impedances:

Wm(z) = � i�

2�

Z 1

�1

Z?
m(!)e

�i!z=vd! ; (1.29)

W 0
m(z) =

1

2�

Z 1

�1

Zk
m(!)e

�i!z=vd! ; (1.30)

where the path of integration in both cases is above all the singularities of the impedances

so as to guarantee causality.

Note that the longitudinal impedance is mostly the monopole (m = 0) impedance

and the transverse impedance is mostly the dipole (m = 1) impedance, if the beam pipe

cross section is close to circular and the particle path is close to the pipe axis. They

have the dimensions of Ohms and Ohms/length, respectively. The impedances have the

following properties:

1: Z
k
0(�!) = [Z

k
0 (!)]

� and Z?
1 (�!) = �[Z?

1 (!)]
� : (1.31)

2: Z
k
0(!) and Z?

1 (!) are analytic with poles only in the lower half !-plane:{ (1.32)

3: Zk
m(!) =

!

c
Z?
m(!) ; (1.33)

for cylindrical geometry and each azimuthal harmonic includingk m = 0 :

4: Re Zk
0 (!) � 0 and Re Z?

1 (!) � 0 when ! > 0 ; (1.34)

if the beam pipe has the same entrance cross section and exit cross section.

5:

Z 1

0

d! ImZ?
m(!) = 0 ; and

Z 1

0

d!
ImZ

k
m(!)

!
= 0 : (1.35)
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The �rst follows because the wake functions are real, the second from the causality

of the wake functions, and the third from the Panofsky-Wenzel theorem [1] between

transverse and longitudinal electromagnetic forces. Re Zk
m(!) � 0 is the result of the

fact that the total energy of a particle or a bunch cannot be increased after passing

through a section of the vacuum chamber where there is no accelerating external forces,

while Re Z?
m(!) � 0 when ! > 0 follows from the Panofsky-Wenzel theorem. The �fth

property follows from the assumption that Wm(0) = 0.

For a pure resistance R, the longitudinal wake is W 0
0(z) = RÆ(z=v). At low frequen-

cies, the wall of the beam pipe is inductive. This wake function is W 0
0(z) = LÆ0(z=v),

where L is the inductance.

For a nonrelativistic beam of radius a inside a circular beam pipe of radius b, the

longitudinal space charge impedance for m = 0 is��

Z
k
0 (!) = i

!

!0

Z0

2
2�

�
1 + 2 ln

b

a

�
; (1.36)

where Z0 =
p
�0=�0 � 377 
 is the impedance of free space, �0 and �0 are, respectively,

the magnetic permeability and electric permitivity of free space, !0=(2�) is the revolution

frequency of the beam particle with Lorentz factors 
 and �. Although this impedance is

capacitive, however, it appears in the form of a negative inductance. The corresponding

wake function is

W 0
0(z) = �Æ0(z=v) 1

!0

Z0

2
2�

�
1 + 2 ln

b

a

�
: (1.37)

The m = 1 transverse space charge impedance for a length ` of the circular beam pipe

is

Z?
1 (!) = i

Z0`

2�
2�2

�
1

a2
� 1

b2

�
; (1.38)

and the corresponding transverse wake function is

W1(z) =
Z0c`

2�
2

�
1

a2
� 1

b2

�
Æ(z) : (1.39)

An important impedance is that of a resonant cavity. Near the resonant frequency

!r=(2�), the mth multipole longitudinal impedances can be derived from a RLC-parallel

��This expression will be derived in Chapter 3. Here, the space charge force is seen by beam particles

at the beam axis. If the force is averaged over the cross section of the beam with a uniform transverse

cross section, the �rst term in the brackets becomes 1

2
instead of 1.
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circuit:

Zk
m(!) =

Rms

1 + iQ

�
!r

!
� !

!r

� ; (1.40)

where the resonant angular frequency is ! = (LmCm)
�1=2 and quality factor is Q =

Rms

p
Cm=Lm. Here, for the mth multipole, the shunt impedance Rms is in Ohms/m2m,

the inductance in henry/m2m, and the capacitance in farad-m2m. The transverse impe-

dance can now be obtained from the P-W theorem of Eq. (1.33):

Z?
m(!) =

c

!

Rms

1 + iQ

�
!r

!
� !

!r

� : (1.41)

Another example is the longitudinal impedance for a length ` of the resistive beam

pipe:

Z
k
0(!) = [1� i sgn(!)]

`

2�b�cÆskin
; (1.42)

where b is the radius of the cylindrical beam pipe, �c is the conductivity of the pipe wall,

Æskin =

s
2c

Z0�r�cj!j ; (1.43)

is the skin depth at frequency !=(2�), and �r is the relative magnetic permeability of

the pipe wall. The transverse impedance is

Z?
1 (!) = [1� i sgn(!)]

`c

�!b3�cÆskin
; (1.44)

and is related to the longitudinal impedance by

Z?
1 (!) =

2c

b2!
Z
k
0 (!) : (1.45)

The above relation has been used very often to estimate the transverse impedance from

the longitudinal. However, we should be aware that this relation holds only for resistive

impedances of a cylindrical beam pipe. The monopole longitudinal impedance and the

dipole transverse impedance belong to di�erent azimuthals; therefore they should not

be related. An example that violates Eq. (1.45) is the longitudinal and transverse space

charge impedances stated in Eqs. (1.36) and (1.38).

More expressions for impedances resulting from various types of discontinuity in the

vacuum chamber are reprinted from the Handbook of Accelerator Physics and Engineer-

ing [3] in the following pages.
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3.2.5 Explicit Expressions of Impe-
dances and Wake Functions
K.Y. Ng, FNAL
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General Remarks and Notations:
W ′

m denotes mth azimuthal longitudinal wake function as a function of distance z for
z<0. When z>0, W ′

m(z)=0 and W ′
m(0)= lim

z→0−
W ′

m(z). Similar for transverse wake Wm.

The mth azimuthal longitudinal impedance Z
‖
m(ω) =

∫
e−iωz/vW

‖
m(z)dz/v is related

to the transverse impedance of the same azimuthal Z⊥
m(ω) =

∫
e−iωz/vW⊥

m(z)idz/(βv) by
Z

‖
m = (ω/c)Z⊥

m (valid when m �= 0). In many cases, β=v/c has been set to 1.
Unless otherwise stated, round beam pipe of radius b is assumed. C = 2πR is the ring

circumference and n is the revolution harmonic. Z0 ≈ 377 Ω is the free-space impedance.
ε0 and µ0 are the free-space dielectric constant and magnetic permeability.

Description Impedances Wakes

Space-charge: [1]
beam radius a in a
length L of perfectly
conducting beam
pipe of radius b.

Z
‖
0

n
= i

Z0L

2Cβγ2

[
1 + 2 ln

b

a

]

Z⊥
m�=0 = i

Z0L

2πβ2γ2m

[
1

a2m
− 1

b2m

] W ′
0 =

Z0cL

4πγ2

[
1 + 2 ln

b

a

]
δ′(z)

Wm�=0 =
Z0cL

2πγ2m

[
1

a2m
− 1
b2m

]
δ(z)

Resistive Wall: [1]
pipe length L, wall
thickness t, conduc-
tivity σc, skin depth
δskin.

Z
‖
m

L
=

ω

c

Z⊥
m

L
=

Z0c/(πb2m)

[1+sgn(ω)i](1+δm0)bc
√

σcZ0c
2|ω| − ib2ω

m+1 + imc2
ω

t�δskin=
√

2c/(|ω|Z0σc), |ω|�cχ/b, χ = 1/(Z0σcb)

For t � δskin and
b/χ � |z| ≈ c/|ω| �
bχ1/3.

Z‖
m =

ω

c
Z⊥

m

Z‖
m =

1−sgn(ω)i
1 + δ0m

L

πσcδskinb2m+1

Wm=− c

πb2m+1(1+δm0)

√
Z0

πσc

L

|z|1/2

W ′
m=− c

2πb2m+1(1+δm0)

√
Z0

πσc

L

|z|3/2

For t� δskin or very
low freq., and b/χ�
|z| ≈ c/|ω|�

√
bt.

Z
‖
0

L
= −iZ0tω

2πbc
,

Z⊥
1

L
= −iZ0t

πb3
W ′

0

L
=−Z0tc

2πb
δ′(z),

W1

L
=−Z0tc

πb3
δ(z)

Z
‖
0 =2Zc

[
φ0

2π

]2[
2 sin2ωL

c
−i sin

2ωL
c

]

Z⊥
1 =

[
Z

‖
0

ω

]
pair

c

b2

[
4
φ0

]2

sin2 φ0

2

W ′
0=2Zc c

[
φ0

2π

]2
[δ(z)− δ(z+2L)]

W1=
8Zc c

π2b2
sin2φ0

2
[H(z)−H(z+2L)]

A pair of strip-line
BPM’s: [2] lengthL,
angle each subtend-
ing to pipe axis φ0,
forming transmis-
sion lines of charac-
teristic impedance
Zc with pipe.

The strip-lines are assumed to terminate with impedance Zc at
the upstream end.

Heifets inductive im-
pedance: [3] low freq.
pure inductance L.
Z

‖
0 rolls off as ω−1/2.

Z
‖
0 = − iωL

(1−iωa/c)3/2

−→ −iωL as a → 0

W ′
0 =

c2L
a
√
πaz

[
1 +

2z
a

]
ez/a

−→ c2Lδ′(z) as a → 0

Pill-box cavity at
low freq.: length g,
radial depth h + b,
where g ≤ h � b [6].

Z
‖
0 = −i

ωZ0

2πcb

[
gh− g2

2π

]

Z⊥
1 = −i

Z0

πb3

[
gh− g2

2π

]
W ′

0 = −Z0c

2πb

[
gh− g2

2π

]
δ′(z)

W1 = −Z0c

πb3

[
gh− g2

2π

]
δ(z)
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Description Impedances Wakes

Pill-box cavity at
low freq.: length g,
radial depth h + b,
where h � g � b
[6].

Z
‖
0 = −i

ωZ0h
2

π2cb

[
ln

2πg
h

+
1
2

]

Z⊥
1 = −i

2Z0h
2

π2b3

[
ln

2πg
h

+
1
2

]
W ′

0=−Z0ch
2

π2b

[
ln

2πg
h

+
1
2

]
δ′(z)

W1=−2Z0ch
2

π2b3

[
ln

2πg
h

+
1
2

]
δ(z)

Pill-box cavity:
length g, radial
depth d. At
freq. ω � c/b,
diffraction model
applies [1].

Z‖
m =

[1 + sgn(ω)i]Z0

(1+δm0)π3/2b2m+1

√
cg

|ω|

Z‖
m =

ω

c
Z⊥

m

Wm = − 2Z0c
√

2g
(1+δm0)π2b2m+1

|z|1/2

W ′
m =

Z0c
√

2g
(1+δm0)π2b2m+1

|z|−1/2

Optical model: [7]
A series of cavities
of periodic length
L. Each cavity
has width g, high
Q resonances of
freq. ωn/(2π) and
loss factor k

(m)
n for

azimuthal mode m.

ReZ‖
m =

N∑
n=1

πk(m)
n δ(ω − ωn) +

2πC
SV

G(ν̄)F (ν)
(1+δm0)b2m

H(ω− ωN )

W ′
m =

N∑
n=1

2k(m)
n cos

ωnz

c
+

2C
SV

G(ν̄)
(1+δm0)b2m

∫ ∞

ωN

dωF (ν) cos
ωz

c

where CSV = 2Z0j
2
m1/(π

2ζ2β) ≈ 650 Ω for m = 0 and 1650 Ω for
m = 1, jm1 is first zero of Bessel function Jm, ζ = 0.8237.

G(ν̄)= ν̄2K2
1(ν̄), F (ν)=

√
ν+1

(ν+2
√
ν+2)2

, ν̄=
ωb

βγc
, ν=

ω

ωSV

=
4b2ω

ζ2c
√
gL

Formulas for com-
putation of W ′

m.
erfc(x) is the
complementary
error function.

∫ ∞

ω̂
dωF (ν) cos

ωz

c
= ωSV F̃0(z/c)−

∫ ω̂

0
dωF (ν) cos

ωz

c

F̃0(x) =
∫ ∞

0
dωF (ν) cosωx =

π

4
(1 + 4x)e2xerfc(

√
2x) −

√
πx

2

Resonator model for
the mth azimuthal,
with shunt imp.
R

(m)
s , resonant freq.

ωr/(2π), quality
factor Q [1].

Z‖
m =

R
(m)
s

1 + iQ (ωr/ω − ω/ωr)

Z⊥
m =

c

ω

R
(m)
s

1 + iQ (ωr/ω − ω/ωr)

Wm =
R

(m)
s c ωr

Qω̄r
eαz/c sin

ω̄rz

c

where α = ωr/(2Q)
ω̄r =

√
|ω2

r − α2|

Res. freq.
ωmnp/(2π) and
shunt impedance
(Rs)mnp of a pill-box
cavity for nth radial
and pth longitudi-
nal modes. Radial
depth d and length
g. xmn is nth zero of
Bessel function Jm

[8].

ω2
mnp

c2
=

x2
mn

d2
+

p2π2

g2

[
Rs

Q

]
0np

=
Z0

x2
0nJ

′2
0 (x0n)

8c
πgω0np




sin2 gω0np

2βc × 1
1 + δ0p

p even

cos2
gω0np

2βc
p odd

[
Rs

Q

]
1np

=
Z0

J ′
1
2(x1n)

2c2

πgd2ω2
1np




sin2 gω1np

2βc p �= 1 and even

cos2
gω1np

2βc p odd
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Description Impedances Wakes

Z
‖
0

n
= −i

Z0g

2πR
lnS

Z⊥
1 = −i

Z0g

πb2
S2 − 1
S2 + 1

W ′
0 = −Z0cg

2π
lnS δ′(z)

W1 = −Z0cg

πb2
S2 − 1
S2 + 1

δ(z)

Low-freq. response
of a pill-box cavity:
[4] length g, radial
depth d. When
g � 2(d− b), replace
g by (d − b). Here,
S = d/b.

Effect will be one half for a step in the beam pipe from radius b
to radius d, or vice versa, when g � 2(d− b).

Iris of half ellipti-
cal cross section at
low freq.: width
2a, maximum pro-
truding length h [5].

Z
‖
0 = −i

ωZ0h
2

4cb

Z⊥
1 = −i

Z0h
2

2b3

W ′
0 = −Z0ch

2

4b
δ′(z)

W1 = −Z0ch
2

2b3
δ(z)

Pipe transition at
low freq.: tapering
angle θ, transition
height h. γ is Euler’s
constant and ψ is
the psi-function [6].

Z
‖
0=

ωb2Z⊥
1

2c
=−i

ωZ0h
2

2π2cb

{
ln

[
bθ

h
−2θ cot θ

]
+

3
2
−γ−ψ

(
θ

π

)
−π

2
cot θ− π

2θ

}

W ′
0 = −

∣∣∣∣∣Z
‖
0

ω

∣∣∣∣∣ c2δ′(z) , W1 = −
∣∣∣Z⊥

1

∣∣∣ cδ(z) , h cot θ � b

Pipe transition at
low frequencies with
transition height
h � b [6].

Z
‖
0 =

ωb2

2c
Z⊥

1 = −i
ωZ0h

2

2π2cb

(
ln

2πb
h

+
1
2

)

W ′
0 = −

∣∣∣∣∣Z
‖
0

ω

∣∣∣∣∣ c2δ′(z) , W1 = −
∣∣∣Z⊥

1

∣∣∣ cδ(z)
Z

‖
0 =

ω2µ2
0L

2x2
0

4a2Zk

Z⊥
1 =

cωµ2
0L

2

4a2Zk

W ′
0 = −c3µ2

0L
2x2

0

4a2Zk
δ′′0(z)

W1 = −c3µ2
0L

2

4a2Zk
δ′(z)

Kicker with window-
frame magnet [9]:
width a, height b,
lengthL, beam offset
x0 horizontally, and
all image current
carried by conduct-
ing current plates.

Zk = −iωL+Zg with L ≈ µ0bL/a the inductance of the windings
and Zg the impedance of the generator and the cable. If the kicker
is of C-type magnet, x0 in Z

‖
0 should be replaced by (x0 + b).

Traveling-wave kicker
with characteristic
impedance Zc for
the cable, and a
window magnet of
width a, height b,
and length L [9].

Z
‖
0 =

Zc

4

[
2 sin2 θ

2
−i(θ− sin θ)

]
, Z⊥

1 =
ZcL

4ab

[
1−cosθ

θ
−i

(
1− sinθ

θ

)]

W ′
0 =

Zcc

4

[
δ(z)−δ

(
z−Lc

v

)
−Lc

v
δ′(z)

]

W1 =
Zcv

4ab

[
H(z)−H

(
z−Lc

v

)
−Lc

v
δ(z)

]
θ = ωL/v denotes the electrical length of the kicker windings and
v = Zcac/(Z0b) is the matched transmission-line phase velocity of
the capacitance-loaded windings.

Electric and magnetic dipole
moments when wavelength� a:

2d=−2ε0
3

a3 2E , 2m=− 4
3µ0

a3 2BBethe’s electric and
magnetic moments of
a hole of radius a in
beam pipe wall [10].

2E and 2B are electric and magnetic flux density at hole when hole
is absent. This is a diffraction solution for a thin-wall pipe.
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Description Impedances Wakes

Z
‖
0 = −i

ωZ0

c

αe + αm

4π2b2

Z⊥
1 = −i

Z0(αe + αm)
π2b4

cos∆ϕ

W ′
0 = −Z0c

αe + αm

4π2b2
δ′(z)

W1 = −Z0c
αe + αm

π2b4
cos∆ϕ δ(z)

Small obstacle [5, 11]
on beam pipe, size
� pipe radius, freq.
below cutoff. αe

and αm are elec-
tric polarizability
and magnetic sus-
ceptibility of the
obstacle.

∆ϕ is the azimuthal angle between the obstacle and the direction
concerning Z⊥

1 and W1.

Polarizabilities for various geometry: beam pipe radius is b and wall thickness is t.

Elliptical hole: ma-
jor and minor radii
are a and d. K(m)
and E(m) are com-
plete elliptical func-
tions of the first and
second kind, with
m = 1−m1 and m1 =
(d/a)2. For long el-
lipse ⊥ beam, major
axis a � b, beam
pipe radius, because
the curvature of the
beam pipe has been
neglected here [12].

αe+αm =




πa3m2
1[K(m)−E(m))]

3E(m)[E(m)−m1K(m)]
πa3[E(m)−m1K(m)]

3[K(m)−E(m)]

m→1
=⇒
long

ellipse




πd4[ln(4a/d)−1]
3a

‖ beam
d � b

πa3

3 [ln(4a/d)−1]
⊥ beam
a � b

αe+αm

circular
=⇒
m→0

2a3

3
circular hole a = d � b

Above are for t � a, ×0.56 (circular) or ×0.59 (long ellipse) when
t ≥ a.
For higher frequency correction, add to αe + αm the extra term,

+
2πa3

3

[
11ω2a2

30c2

]
circular,



−πad2

3

[
ω2a2

5c2

]
‖ beam

long ellipse

+
2πa3

3

[
2ω2a2

5c2[ln(4a/d)− 1]

]
⊥ beam

long ellipse

Rectangular slot:
length L, width w.

αe + αm = w3(0.1814− 0.0344w/L) t � a, ×0.59 when t ≥ a

Rounded-end slot:
length L, width w.

αe + αm = w3(0.1334− 0.0500w/L) t � a, ×0.59 when t ≥ a

Annular-ring-shaped
cut: inner and outer
radii a and d = a+w
with w � d.

αe + αm =
π2d2a

2 ln(32d/w)− 4
− π2w2(a+ d)

16
t � d

αe + αm = πd2w − 1
2w

2(a+ d) t ≥ d

Half ellipsoidal pro-
trusion with semi
axes h radially, a
longitudinally, and d
azimuthally. 2F1

is the hypergeomet-
ric function.

αe + αm = 2πahd
[
1
Ib

+
1

Ic − 3

]

Ib =2F1

(
1, 1; 5

2 ; 1−
h2

a2

)
, Ic =2F1

(
1, 1

2 ;
5
2 ; 1−

a2

h2

)
, if a = d

αe + αm = πa3 if a = d = h ,
2πh3

3[ln(2h/a)− 1]
if a = d � h

αe + αm =
8h3

3

[
1 +

(
4
π
− π

4

)
a

h

]
if a � h = d

αe + αm =
8πh4

3a

[
ln

2a
h

− 1
]

if a � h = d
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Array of pill-boxes,
box spacing L, each
with gap width g,
beam pipe radius b.
Gluckstern-Yokoya-
Bane formula [15] at
high freq. to order
(kg)−1:

For each cavity of length L with k = ω/c,

Z
‖
0 =

iZ0L

πkb2

{
1 + [1 + i sgn(k)]

αL

b

√
π

|k|g

}−1

with k = ω/c. α = 1 when g/L � 1 and α = α1 = 0.4648 when
g/L = 1, the limiting case of infinitely thin irises. In general, with
Υ = g/L, α(Υ) = 1 − α1Υ1/2 − (1 − 2α1)Υ +O(Υ3/2) .

Z
‖
0 =

Z0cL

2πb2
∑

ω′=±ωr

[
πδ(ω−ω′)+

i

ω−ω′

]

Z⊥
1 =

2cL
b2ω

Z
‖
0

W ′
0(z) =

Z0cL

πb2
cos

ωrz

c

W1(z) =
2Z0L

πb4ωr
sin

ωrz

c

The above pill-box
array with radial
depth d generates a
single-frequency res-
onance impedance at

ωr = c

(
2L
bgd

)1/2

[16,

17].

The corresponding resonator per pill box has
R

(0)
s ωr

Q
=

Z0cL

πb2
.

Smooth toroidal b
and R = 1

2(a + b).
As the Lorentz
factor γ → ∞,
(ultra-relativistic
beam), a curvature
contribution remains
for the longitudinal
impedance [18].

Valid from zero frequency up to just below synchronous resonant
modes, i.e., 0 < ν <

√
R/h with ν = ωh/c,

Z
‖
0

n
= iZ0

(
h

πR

)2
{[

1− e−2π(b−R)/h− e−2π(R−a)/h

] [
1 − 3

(
ν

π

)2
]

+0.05179− 0.01355
(
ν

π

)2
}

+ ρ

≈ iZ0

(
h

πR

)2
[
A− 3B

(
ν

π

)2
]
.

where ρ is quadratic in ν. As (b−a)/h increases, ρ vanishes ex-
ponentially and A ≈ B ≈ 1. In general, A/B ≈ 1 implying ImZ

‖
0

changes sign (a node) near ν = π/
√

3.

Z
‖
0

n
=

iZ0L

4πRβγ2

[
1 + 2 ln

rw

a
+C‖

]
, Z⊥

1 =
iZ0L

2πβ2γ2

[
1
a2

− 1 − C⊥
r2
w

]Rf cage: beam of ra-
dius a surrounded by
a cylindrical cage or
array of N wires of
radius ρw, length L
at radial distance rw

from beam center.
Wire filling factor is
fw = Nρw/(πrw).
Formulas are valid at
low frequencies, 0 <
n<R/rw and N�1.

Without metallic beam pipe outside wire array or cage [19],

C‖ = − 2 ln(nrw/R) ln(πfw)
N ln(nrw/R) + ln(πfw)

, C⊥ = − 2 ln(πfw)
N − 2 ln(πfw)

With infinitely conducting metallic beam pipe, radius b > rw [20],

C‖ = 2 ln
b

rw
− 2N [ln(b/rw)]2

N ln(b/rw) − ln(πfw) + ln[1−(rw/b)2N ]

C⊥=
[1−(rw/b)2][(rw/b)2+(b/rw)2]{ln[1−(rw/b)2N ] − 2 ln(πfw)}

N [1−(rw/b)2] + [(rw/b)2+(b/rw)2] ln[1−(rw/b)2N ]− 2 ln(πfw)
A ceramic layer between the wires and metallic beam pipe has
negligible effect on the impedances.
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Wall roughness [13]
1-D axisymmetric
bump, h(z) or 2-D
bump h(z, θ). Valid
for low frequency
k = ω/c � (bump
length or width)−1,
h � b, pipe radius,
and |∇h| � 1.

1-D: Z
‖
0 = −2ikZ0

b

∫ ∞

0
κ|h̃(κ)|2dκ

with spectrum h̃(k) =
1
2π

∫ ∞

−∞
h(z)e−ikzdz

2-D: Z
‖
0 = −4ikZ0

b

∞∑
m=−∞

∫ ∞

−∞

κ2√
κ2 +m2/b2

|h̃m(κ)|2dκ

with spectrum h̃m(k) =
1

(2π)2

∫ 2π

0
dθ

∫ ∞

−∞
dz h(z, θ)e−ikz−imθ

Heifets and Kheifets formulas for tapered steps and tapered cavity at high frequencies [14].

Taper in from radius
h to b (<h), out from
radius b to h; taper-
ing angle α. Taper-
ing inefficient for a
bunch of rms length
σ, if 2(h−b) tanα �
σ. All formulas here
and below are valid
for positive k = ω/c
only.

ReZ‖
0 =±Z0

2π
ln
h

b
+

(
Z

‖
0

)
step

, ReZ⊥
1 =±Z0b

4π

(
1
b2

− 1
h2

)
+

(
Z⊥

1

)
step

{
+in

− out(
Z

‖
0

)
step

=
Z0

2π
ln
h

b
, tanα>

h−b

kb2
,

(
Z

‖
0

)
step

=
Z0

4
kb tanα, tanα� 1

kb(
Z⊥

1

)
step

=
Z0

4πb

[
1− 1

(1+kb)2 2F1

(
1, 3

2 , 3,
4bh

(b+h)2

)]
, tanα>

h−b

kb2
, kb�1

(
Z⊥

1

)
step

=
Z0b

4π

(
1
b2

− 1
h2

)
, tanα>

h−b

kb2
, kb�1, h�b

(
Z⊥

1

)
step

=
Z0

16b
(kb)3 tanα, tanα � 1

kb

Pill-box cavity: total
length g, radial depth
h without taper. Z

‖
0 =




(1 + i)Z0

2πb

√
g

kπ
g � kb2

− i
Z0

π
ln

h

b
g � kb2

Tapering angle α on
both sides, g � h. ReZ‖

0 = 2
(
Z

‖
0

)
step

, ReZ⊥
0 = 2

(
Z⊥

0

)
step

as given above
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1.6 Exercises

1.1. Prove the properties of the impedances in Eqs. (1.31)-(1.34).

1.2. Using a RLC-parallel circuit, derive the longitudinal impedance in Eq. (1.40) by

identifying R0s = R, !r = 1=
p
LC, and Q = R

p
C=L. Then show that the wake

function is W 0
0 = 0 for z < 0, and for z > 0,

W 0
0(z) =

!rR0s

Q
e��z=v

h
cos

�!z

v
� �

�!
sin

�!z

v

i
; (1.46)

with � = !r=(2Q) and �! =
p
!2
r � �2. Similarly, show that

W1(z) = �R1sv!r

Q�!r
e��z=v sin

�!z

v
; (1.47)

for z > 0 and zero otherwise.

1.3. Show that the wake functions corresponding to the longitudinal resistive wall im-

pedance of Eq. (1.42) and the transverse resistive wall impedance of Eq. (1.44) for

a length ` are, respectively,

W 0
0(z) = � �3=2c`

4�bz3=2

r
Z0�r
��c

; (1.48)

W1(z) = � �3=2c`

�b3z1=2

r
Z0�r
��c

; (1.49)

where b is the beam pipe radius, �c is the conductivity and �r the relative magnetic

permeability of the beam pipe walls. The above are only approximates and are

valid for b�1=3 � z � b=�, where � = 1=(b�cZ0). When z � b�1=3, W 0
0(z) should

have the proper positive sign.
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